

Arab Academy for Science, Technology & Maritime Transport College of Engineering & Technology Computer Engineering Department

University/Academy: Arab Academy for Science, Technology & Maritime Transport

Faculty/Institute: College of Engineering & Technology

Program: B.Sc. Computer Engineering

Form no. (12): Course Specification

1- Course Data

Course Code: CC524	Course Title: Neural Networks		Academic Year/Level: 4 th year / 7 th semester
Specialization:	No. of Instructional Units	Lecture	Practical
Computer Engineering	3	2	2

2- Course Aim

• This course will provide students with detailed skills to use Artificial neural networks for solving many types of engineering problems such as mapping, clustering, and constrained optimization, in such areas as pattern recognition, signal processing, and control systems.

3- Intended Learning Outcomes			
a- Knowledge and	Through knowledge and understanding, students will be able to:		
Understanding	a3. Methodologies of solving engineering problems, data collection and		
	interpretation.		
	a5. Engineering principles in the fields of logic design, circuit analysis, machine		
	and assembly languages, computer organization and architectures, memory		
	hierarchy, advanced computer architectures, embedded systems, signal		
	processing, operating systems, real-time systems and reliability analysis.		
	Describe a specific type of Neural Networks in details (Competitive neural networks).		
	Describe a specific type of Neural Networks in details (KOHONEN self-organizing networks).		
	Describe a specific type of Neural Networks in details (Adaptive reasoning theory (ART)).		
	Describe a specific type of Neural Networks in details (Adaptive reasoning theory (ART)).		
	Describe a specific type of Neural Networks in details (Hopfield neural networks).		
	a7. Technologies of data, image and graphics representation and organization		
	on computer storage media.		
	Apply Neural Networks for a specific case study.		
	Describe course projects in details.		
	Discuss the progress of the course projects.		
b- Intellectual	Through intellectual skills, students will be able to:		
Skills	b1. Select/Apply appropriate mathematical and computer-based methods for		
	modeling and analyzing problems and select appropriate solutions for		
	engineering problems based on analytical thinking.		
	b3. Combine, exchange, and assess different ideas, views, and knowledge		
	from a range of sources.		
	Calculate weights by training single PERCEPTRON with certain data samples. Train the second site as a selection of the second site as a selection.		
	• Train the neural network with sample data.		
	b4. Assess and evaluate the characteristics and performance of components, systems and processes and investigate their failure.		
	b5. Select, synthesize, and apply suitable IT tools to computer engineering		
	problems		
	Test the neural network.		

	Train and test neural network with different transfer functions.	
c- Professional Skills	Through professional and practical skills, students will be able to: c2. Create and/or re-design a process, component or system, and carry out specialized engineering designs with neatness and aesthetics in design and approach. • Design a multilayer PERCEPTRON. • Design Competitive neural networks. • Design KOHONEN self-organizing networks. • Design Adaptive reasoning theory (ART).	
d- General Skills	Through general and transferable skills, students will be able to: d2. Work in stressful environment and within constraints, communicate effectively, lead and motivate individuals and effectively manage tasks, time, and resources. • Verify theory with practice using MATLAB.	

4- Course Content

4- Course C	
Week No.1	Introduction to basic concepts of neural networks.
Week No.2	Single PERCEPTRON.
Week No.3	The multilayer PERCEPTRON.
Week No.4	Artificial neural networks: applications, learning rules, and architecture.
Week No.5	Competitive neural networks.
Week No.6	KOHONEN self-organizing networks.
Week No.7	7th week Exam +Revision
Week No.8	Adaptive reasoning theory (ART)
Week No.9	Adaptive reasoning theory (ART)
Week No.10	Hopfield neural networks.
Week No.11	Neural networks implementation.
Week No.12	12th week Exam + Revision
Week No.13	Neural networks applications.
Week No.14	Neural networks applications.
Week No.15	Presentation of projects and Final Exam.
Week No.16	Presentation of projects and Final Exam.

5- Teaching and Learning Methods

- Lectures
- Tutorials
- · Reports & sheets
- Laboratories
- Seminars

6-Teaching and Learning Methods for Students with Special Needs

- Lectures
- Tutorials
- Reports & sheets
- Laboratories
- Seminars

The academic advisors of each student, as well as dedicated department TAs monitor the students' progress and solve any problem he/she may encounter.

7- Student Assessment

a-Procedures used	1-Written Examinations to assess The Intended Learning Outcomes.	
	2-Class Activities (Reports, Discussions,) to assess The Intellectual Skills.	
b- Schedule:	Assessment 1	7 ^{tn} Week Written Exam
	Assessment 2	12 th Week Written Exam
	Assessment 3	Continuous
	Assessment 4	16 th Week Final Written Exam
c- Weighing of	7 th Week Examination	30 %
Assessment	12 th Week Examination	20 %
	Final-term Examination	40 %
	Oral Examination	00 %
	Practical Examination	00 %
	Semester Work	10 %
	Total	100%

8- List of References:

a- Course Notes	
b- Required Books	 M. T. Hogan, H. Demuth, neural networks design, 1996. Robert R. Trippi, Efraim Turban, Neural Networks In Finance and Investing,
(Textbooks)	McGraw-Hill, 1996
c- Recommended	Martin T.Hagan, Howard B. Demuth & Mark Beale, Neural Networks:Design,
Books	Reprinted, 2002
d- Periodicals, Web Sites, etc.	

Course Instructor: Assoc. Prof. Dr. Sherin Youssef Head of Department: Prof. Dr. Mohamad AbouEl-Nasr

Program Manager: Prof. Dr. Mohamad AbouEl-Nasr